

La symétrie axiale

Traçons le point E' tel que : la droite (D) est médiatrice du segment [EE'].

Le point E' est appelé : Le symétrique du point E par rapport à la droite (D).

La droite (D) est appelée : Axe de symétrie.

b)_ Deuxième cas : si $E \in (D)$.

On remarque que E et E' sont deux points confondus.

Donc : Le symétrique du point E par rapport à la droite (D) est le point E lui-même.

2/ Définition:

Dire que le symétrique d'un point M par rapport à une droite (D) est :

- ➤ Le point M' tel que : (D) est la médiatrice du segment [MM'], si $M \notin (D)$.
- \triangleright Le point M lui-même, si $M \in (D)$.

*/ Remarques importantes

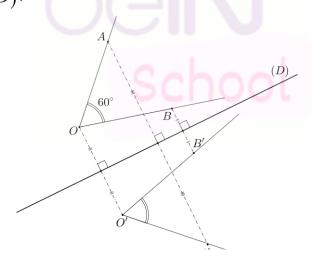
Si le point M' est le symétrique d'un point M par rapport à une droite (D), alors M est aussi le symétrique de M' par rapport à (D).

On dit que les points M et M' sont deux points symétriques par rapport à (D).

3/ Propriétés de conservation :

a)_Propriété:

Si les points A' et B' sont les symétriques respectifs des points A et B par rapport à une droite, alors : AB = A'B'.


On dit que : la symétrie axiale conserve les distances (Les longueurs)

b)_ Conservation de mesures d'angles :

b_1) Exemple:

Soient (D) une droite et $A\hat{O}B$ un angle tel que : $A\hat{O}B = 60^{\circ}$

A', O' et B' sont les symétriques respectifs des points A, O et B par rapport à la droite (D).

Avec le rapporteur déterminons la mesure de l'angle $A'\hat{O}'B'$:

On trouve que : $A'\hat{O}'B' = 60^{\circ}$.

Donc : on déduit que : $A\hat{O}B = A'\hat{O}'B'$.

b_2) Propriété:

Si les points A', O' et B' sont les symétriques respectifs des points

A, O et B par rapport à une droite, alors : $A\hat{O}B = A'\hat{O}'B'$.

On dit que : la symétrie axiale conserve les mesures d'angles.

On remarque que les points A', B' et C' sont aussi alignés.

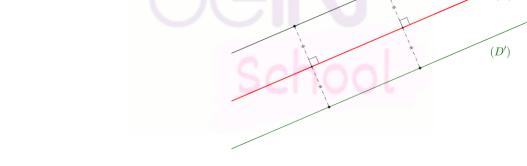
 (c_2) Propriété :

Si les points A', B' et C' sont les symétriques respectifs des points alignés A, B et C par rapport à une droite, alors : A', B' et C' sont aussi des points alignés.

On dit que : la symétrie axiale conserve l'alignement des points.

Le symétrique des figures de base :

1/ Le symétrique d'une droite :


a)_ Parallèle à l'axe de symétrie :

 a_1) _ Exemple :

Soient (D) et (Δ) deux droites telles que : $(D)//(\Delta)$.

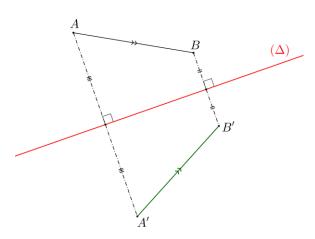
Construisons (D') le symétrique de (D) par rapport à (Δ) .

Pour cela on va choisir deux points (sans les nommés) sur (D), puis on va tracer leurs symétriques par rapport à (Δ) .

On remarque que : $(D')//(\Delta)$.

 a_2)_Propriété:

Le symétrique d'une droite parallèle à l'axe de symétrie par rapport à une droite est une droite qui lui est parallèle.


2/ Le symétrique d'un segment :

a)_Exemple:

Soit (Δ) une droite et [AB] un segment.

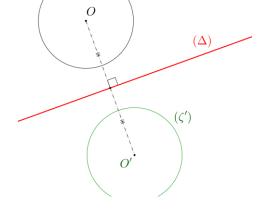
Construisons le segment [A'B'] le symétrique de [AB] par rapport à (Δ) .

Pour cela on va construire A' et B' les symétriques respectifs de A et B par rapport à (Δ) .

Les segments [AB] et [A'B'] ont même longueur, car la symétrie centrale conserve les longueurs.

b)_ Propriété:

Le symétrique d'un segment par rapport à une droite est un segment de même longueur .


3/ Le symétrique d'un cercle :

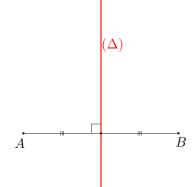
a)_Exemple:

Soit (Δ) une droite et (ζ) un cercle de centre O et de rayon r.

Construisons le cercle (ζ') le symétrique de (ζ) par rapport à (Δ) .

Pour cela on va construire O' le symétrique de O par rapport à (Δ) et on va garder le même rayon.

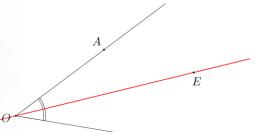
III_ L 'axe de symétrie d'une figure :


1/ Définition:

On dit qu'une droite (D) est un axe de symétrie d'une figure (\mathcal{F}) lorsque le symétrique de (\mathcal{F}) par rapport à (D) est (\mathcal{F}) elle-même.

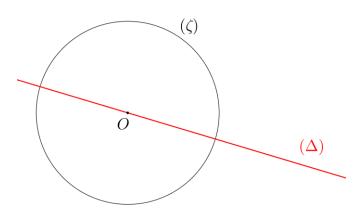
- 2/ Axes de symétrie de quelques figures usuelles :
 - a)_ Le segment :

L'axe de symétrie d'un segment est sa médiatrice.


La droite (Δ) médiatrice du segment [AB] est l'axe de symétrie de ce segment

b)_L'angle:

L'axe de symétrie d'un angle est sa bissectrice.


La droite (OE) bissectrice de l'angle $A\hat{O}B$ est l'axe de symétrie de cet angle

B

c)_ Le cercle :

L'axe de symétrie d'un cercle est toute droite passant par le centre de ce cercle.

La droite (Δ) est un axe de symétrie du cercle (ζ)