

Systèmes d'équations

3ASC

School

Mathématiques

I Système de deux équations du premier degré à deux inconnues :

1/Définition:

Soient a, b, c, a', b' et c' des nombres réels donnés et x et y deux nombres réels inconnus.

On appelle système de deux équations du premier degré à deux inconnues,

toute écriture de la forme : $\begin{cases} ax + by + c = 0 \\ a'x + b'y + c' = 0 \end{cases}$

2/Exemples:

On considère les systèmes suivants :

$$\begin{cases} 2x + y - 1 = 0 \\ -3x - 4y = -2 \end{cases}; \begin{cases} \frac{1}{2}x - 3y = \frac{2}{3} \\ -3x + y + 2 = 0 \end{cases}; \begin{cases} \frac{x + 2y}{2} - 1 = 0 \\ 3x + y = -4 \end{cases}$$

3/Résolution algébrique d'un système de deux équations à deux inconnues :

a)_Définition:

Résoudre un système de deux équations à deux inconnues x et y, c'est trouver tous les couples (x; y), s'ils existent pour lesquels les deux équations soient vraies simultanément.

b)_ Méthodes de résolution d'un système :

 b_1) Méthode par substitution : on utilise <u>de préférence</u> la méthode par substitution lorsque l'une des deux inconnues a pour coefficient 1 ou -1.

**/ Exemple:

Ici, y a pour coefficient -1

Résolvons le système :
$$(1)(3x - y = 1)$$

D'où : (3) y = -1 + 3x

*Exprimons y en fonction de x dans l'équation (1):

On a: 3x - y = 1 signifie que: -y = 1 - 3x

*Substituons y par -1+3x dans l'équation (2), puis calculons x

On a :
$$2x+3y=19$$
 signifie que : $2x+3(-1+3x)=19$

$$2x-3+9x=19$$

$$11x = 19 + 3$$

$$11x = 22$$

$$x = \frac{22}{11}$$

$$x = 2$$

*Remplaçons x par 2 dans l'équation (3), puis calculons y :

On a :
$$y=-1+3x$$
 signifie que : $y=-1+3\times 2$

$$y = -1 + 6$$

$$y = 5$$

Donc: le système a pour unique solution le couple (2;5)

 b_2) _ Méthode par combinaison linéaire : on utilise <u>de préférence</u> la méthode de

Combinaison linéaire dans les autres cas.

**/ Exemple:

Résolvons le système :
$$(1) - 5x + 4y = -1$$

Ici, aucun coefficient n'est égal à 1 ou - 1

*On multiplie les membres de l'équation (2) par 2 :

(1)
$$\int -5x + 4y = -1$$

(3) $\int 6x - 4y = 2$

* On a joute membre à membre les équations (1) et (3) :

$$-5x + 4y + 6x - 4y = -1 + 2$$

$$x = 1$$

*On remplace x par 1 dans l'équation (3) puis on calcule y:

$$\begin{cases} x=1 \\ x=1 \end{cases}$$
 signifie que :
$$\begin{cases} x=1 \\ x=1 \end{cases}$$

$$\begin{cases} x=1 \\ 6\times 1-4y=2 \end{cases} \text{ signific que } : \begin{cases} x=1 \\ -4y=2-6 \end{cases}$$

$$\text{C'est-\`a-dire } : \begin{cases} x=1 \\ -4y=-4 \end{cases} \text{ , par suite } : \begin{cases} x=1 \\ y=\frac{-4}{4}=-1 \end{cases}$$

D'où : le système a pour unique solution le couple (1;-1).

4/ Résolution graphique d'un système de deux équations à deux inconnues :

a) Exemple 1:

Résolvons le système :
$$\begin{cases} 2x + y - 1 = 0 \\ 4x + 2y = 2 \end{cases}$$
.

On considère les droites (D) et (Δ) telles que :

(D):
$$2x + y - 1 = 0$$
 et (Δ): $4x + 2y = 2$

Cherchons les équations réduites des droites (D) et (Δ) :

On a:

$$\begin{cases} y = -2x + 1 \\ 2y = -4x + 2 \end{cases}$$

$$\begin{cases} y = -2x + 1 \\ y = \frac{-4x}{2} + \frac{2}{2} \end{cases}$$

$$\begin{cases} y = -2x + 1 \\ y = -2x + 1 \end{cases}$$

On remarque que les deux droites (D) et (Δ) ont la même équation réduite.

Donc: (D) et (Δ) sont deux droites confondues.

D'où : Une infinité de couples (x; y) sont solutions de ce système.

b)_Exemple 2:

Résolvons le système :
$$\begin{cases} 3x + y - 5 = 0 \\ 6x + 2y + 1 = 0 \end{cases}$$
.

On considère les droites (D) et (Δ) telles que

(D):
$$3x + y - 5 = 0$$
 et (Δ): $6x + 2y + 1 = 0$

Cherchons les équations réduites des droites (D) et (Δ) :

On a:

$$\begin{cases} y = -3x + 5 \\ 2y = -6x - 1 \end{cases}$$

$$\begin{cases} y = -3x + 5 \\ y = \frac{-6x}{2} - \frac{1}{2} \end{cases}$$

$$\begin{cases} y = -3x + 5 \\ y = -3x - \frac{1}{2} \end{cases}$$

000003

On remarque que les deux droites (D) et (Δ) ont le même coefficient directeur.

Donc: (D) et (Δ) sont strictement parallèles.

D'où : Ce système n'admet pas de solution.

c)_Exemple 3:

Résolvons le système :
$$\begin{cases} 2x - y - 1 = 0 \\ -3x + y + 2 = 0 \end{cases}$$
.

On considère les droites (D) et (Δ) telles que :

(D):
$$2x-y-1=0$$
 et (Δ): $-3x+y+2=0$

Cherchons les équations réduites des droites (D) et (Δ) :

On a:

$$\begin{cases} -y = -2x + 1 \\ y = 3x - 2 \end{cases}$$
$$\begin{cases} y = 2x - 1 \\ y = 3x - 2 \end{cases}$$

On remarque que les deux droites (D) et (Δ) n'ont pas le même coefficient directeur.

Donc: (D) et (Δ) sont deux droites sécantes.

Soit M le point de rencontre des droites (D) et (Δ) .

Construisons les droites (D) et (Δ) dans le plans rapporté à un repère orthonormé (O;I;J), puis déterminons les coordonnées du point M.

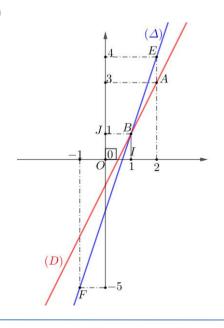
On considère les tableaux de valeurs suivants :

(D)	х	у	M(x;y)
A	2	3	A(2;3)
В	1	1	B(1;1)

Donc: (D) = (AB)

(Δ)	х	у	M(x;y)
E	2	4	E(2;4)
\overline{F}	-1	-5	F(-1;-5)

Donc : $(\Delta) = (EF)$



0000004

On remarque que les droites (D) et (Δ) se coupent en B(1;1)

Donc: M = B signifie que: M(1;1).

D'où : le système a pour unique solution le couple (1;1).

II Résolution de problèmes :

1/Règle:

La résolution d'un problème se déroule en 4 étapes :

- 1/ Choisir des inconnues.
- 2/ Mise en système d'équations.
- 3/ Résolution du système.
- 4/Retour au problème.

2/Exemples:

Une usine fabrique deux sortes d'objets : A et B.

L'objet A nécessite 2 kg d'acier et 3 heures de fabrication.

L'objet B nécessité 4 kg d'acier et 2 heures de fabrication.

Combien d'objets de chaque sorte a-t-on fabriqué en 67 heures de travail et en utilisant 80 kg d'acier ?

1/Choix des inconnues:

Soient x le nombre d'objets A, et y le nombre d'objets B.

2/Mise en système d'équations:

Puisque l'objet A nécessite 2,4 kg d'acier et que l'objet B nécessite 4 kg d'acier

alors : l'ensemble d'objets fabriqués utilisant 80 kg d'acier est : 2,4x+4y=80.

Et puisque l'objet A nécessite 3h de fabrication et que l'objet B nécessite 2h de fabrication alors : l'ensemble d'objets fabriqués en 67h est : 3x + 2y = 67

D'où : le système à résoudre est :
$$\binom{1}{2}, 4x + 4y = 80$$

 $\binom{2}{3}x + 2y = 67$

3/Résolution du système:

On multiplie les membres de l'équation (1) par -2:

(1)
$$2,4x+4y=80$$

(3) $-6x-4y=-134$

0000005

On ajoute membre à membre les équations (1) et (3), puis on calcule x:

$$\begin{cases} 2,4x+4y=80\\ 2,4x+4y-6x-4y=80-134 \end{cases}$$

$$\begin{cases} 2,4x+4y=80\\ -3,6x=-54 \end{cases}$$

$$\begin{cases} 2,4x+4y=80\\ -3,6x=-54 \end{cases}$$

$$\begin{cases} 2,4x+4y=80\\ x=\frac{-54}{-3,6}=\frac{540}{36}=15 \end{cases}$$

On remplace x par 15, puis on calcule y:

$$\begin{cases} 2,4x+4y=80\\ x=\frac{-54}{-3,6} = \frac{540}{36} = 15 \end{cases}$$

$$\begin{cases} 2,4\times15+4y=80\\ x=15 \end{cases}$$

$$\begin{cases} 36+4y=80\\ x=15 \end{cases}$$

$$\begin{cases} 4y=80-36\\ x=15 \end{cases}$$

$$\begin{cases} 4y=44\\ x=15 \end{cases}$$

$$\begin{cases} 4y=44\\ x=15 \end{cases}$$

D'où : le système admet pour unique solution le couple : (15;11).

4/ Retour au problème:

- */Le nombre d'objets A fabriqués : est 15 objets.
- */Le nombre d'objets B fabriqués : est 11 objets.